There are no items in your cart
Add More
Add More
Item Details | Price |
---|
Finish Syllabus in 10 Days with personal Mentor
Donot Miss 60 Marks of UPSC Maths Paper 2
Language: ENGLISH and HINDI
Instructors: SuccessClap
Download Important Questions from the Link:
https://drive.google.com/drive/folders/1oY80HFSxaP7GkmiFFj-t4oE7zQgwSNMQ?usp=sharing
UPSC asks 6 type of Questions from Mechanics
1) Find Moment of Inertia
2) Problems on Lagrange
3) Problems on Hamilton
4) Problems on D-Alembert Principle
5) Motion in 2 Dimentions
6) Problems on Enerygy Conservation and Momentum
ALL The Problems can be easily Solved through proper learning
WE TEACH YOU : HOW TO SOLVE PROBLEMS
WE COVER KRISHNA SERIES BOOKS for DYNAMICS
WE COVER PROBLEMS ON LAGRANGE and HAMILTON from Krishna and Foreign Text Books.
WE PROVIDE VIDEO SOLUTIONS TO PREVIOUS YEAR PROBLEMS : 1992 to 2019
FOR QUERY: WHATSAPP 9346856874
Introduction to Lagrangian and Hamilton | |||
I01 Intro1 | Preview | ||
I02 Intro2 | Preview | ||
I03 how to solve Lagrange 1 | Preview | ||
I04how to solve Lagrange 2 | Preview | ||
I05how to solve Lagrange 3 | |||
I06 how to solve Hamiltonian | |||
Lagrangian Imp Basic questions | |||
LA01 simple pendulum | |||
LA02 linear oscillator | |||
LA03 centr2 | |||
LA04 conical pendulum | |||
LA05 spher | |||
LA06 projectile | |||
LA07 particle on s | |||
LA08 lc | |||
LA09 hoop | |||
LA10a atwood1 | |||
LA10b atwood2 | |||
LA11 bead slide on uniform rotating wire | |||
LA12 dumb bell in vertical plane | |||
Lagrangian Krishna Series Qns | |||
LK01 | |||
LK02 rod fall | |||
LK03 bead1 | |||
LK05 | |||
LK06 | |||
LK07 | |||
LK0812 | |||
Lagrangian ALL BOOKS QNS | |||
LB-01 | |||
LB-02 | |||
LB-03 | |||
LB-04z | |||
LB-05z | |||
LB-06z | |||
LB-07z | |||
LB-07z | |||
LB-08z | |||
LB-09z | |||
LB-10z | |||
LB-11z | |||
LB-12z | |||
LB-13z | |||
LB-14z | |||
LB-15z | |||
LB-16z | |||
LB-17z | |||
LB-18z | |||
LB-19z | |||
LB-20z | |||
LB-21 | |||
Hamiltonian problems | |||
H01 Simple Pendulum Simple pendulum | |||
H02 Harmonic Osillator harminic oscillatorZZZ | |||
H03 Compound Pendulum compound pendulum | |||
H04 Central Force Central Force central force | |||
H05 Earth surface | |||
H06 pendulum move | |||
H07 Atwood | |||
H08 cone | |||
H09 2d isotropic harmonic | |||
H10 h polar | |||
H11 h spherical | |||
H12 Weber force | |||
H13 Spring accelarating | |||
H14 H Cylindrical | |||
H15 H Omega | |||
H16 h q p square | |||
H17 surface of sphere | |||
H18 wire bent | |||
H19 Yukawa | |||
H20 H qn reg | |||
Moment of Inertia and D Alambert | |||
UM_A Moment of Inertia-1 | |||
UM_A Moment of Inertia-2 | |||
UM_A Moment of Inertia-3 | |||
UM_A Moment of Inertia-5 | |||
UM_A Moment of Inertia-6 | |||
UM_A Moment of Inertia-7 | |||
UM_A Moment of Inertia-8 | |||
UM_B dalembert1-1 | |||
UM_B dalembert2-1 | |||
UM_B dalembert2-2 | |||
UM_B dalembert2-3 | |||
UM_C langrange-1 | |||
UM_C langrange-2 | |||
UM_C langrange-3 | |||
UM_C langrange-4 | |||
UM_C langrange-5 | |||
UM_C langrange-6 | |||
UM_C langrange-7 | |||
UM_C langrange-8 | |||
UM_D hamiltonian1-1 | |||
UM_D hamiltonian2-1 | |||
UM_D hamiltonian3-1 | |||
UM_D hamiltonian4-1 | |||
Chapter 1 Previous Year Paper Video Solutions | |||
2019 Sphere Hamilton | Preview | ||
2019 DeAlembert Problem | Preview | ||
2019 Cylinder Problem Method 2 | Preview | ||
2017-Lagrange 2 Rods on Plane | Preview | ||
2015-Moment of Inertia | Preview | ||
2013 lagrange 2 Rods | |||
2012 Moment of Inertia pendulum | |||
2012 Compound pendulum | |||
2011 Rod Ring Energy Conservation | |||
2009 Moment of Inertia Sphere Cylender | |||
2007-earth problem hamiton | |||
2006 Cylinder Hamilton Force | |||
2005 Plate swing Diagonal find | |||
2005 Plank problem | |||
2004 Lagrange Paraboiloid | |||
2004 Hamilton Forcefield derivation | |||
2003 Moment of Inertia Cardiod | |||
2002 Moment of Inertia | |||
2002 D Alambert principle | |||
2001 cone Lagrange | |||
2000 Plank problemR | |||
1996 ROD swing DAlambert R | |||
1992 Generalised acceleration Q |
After successful purchase, this item would be added to your courses.You can access your courses in the following ways :